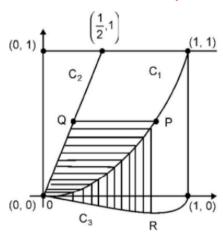
Que 12:

Let C_1 and C_2 be the graphs of the functions $y = x^2$ and y = 2x, $0 \le x \le 1$ respectively. Let C_3 be the graph of a function y = f(x), $0 \le x \le 1$, f(0) = 0. For a point P on C_1 , let the lines through P, parallel to the axes, meet C_2 and C_3 at C_3 and C_4 are equallel to the shaded regions C_4 and C_4 are equallel to the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the shaded regions C_4 and C_4 are equallel to the axes of the axes of

[1998 - 8 Marks]



solutions

$$f(x) = x^3 - x^2$$

Let P be on
$$C_1$$
, $y = x^2$ be (t, t^2)

 \therefore ordinate of Q is also t^2 .

Now *Q* lies on y = 2x, and $y = t^2$

$$\therefore x = t^2/2$$

$$\therefore Q\left(\frac{t^2}{2}, t^2\right)$$

For point R, x = t and it is on y = f(x)

$$\therefore$$
 R is $[t, f(t)]$

Area
$$OPQ = \int_0^{t^2} (x_1 - x_2) dy = \int_0^{t^2} (\sqrt{y} - \frac{y}{2}) dy$$

= $\frac{2}{3}t^3 - \frac{t^4}{4}$...(i)

Area
$$OPR = \int_{0C_1}^{t} y dx + \left| \int_{0C_3}^{t} y dx \right|$$

= $\int_{0}^{t} x^2 dx + \left| \int_{0}^{t} f(x) dx \right| = \frac{t^3}{3} + \left| \int_{0}^{t} f(x) dx \right|$ (ii)

Equating (i) and (ii), we get,

$$\left| \frac{t^3}{3} - \frac{t^4}{4} \right| \int_0^t f(x) dx$$

Differentiating both sides, we get,

$$t^2 - t^3 = -f(t)$$

$$\therefore f(t) = x^3 - x^2.$$